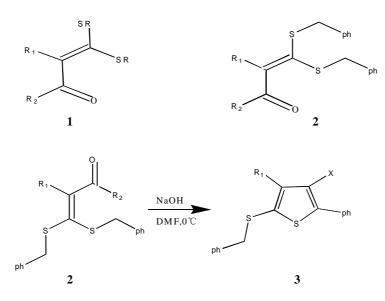
## Intramolecular Aldol Condensation of $\alpha$ - Oxo Ketene Dibenzylthioacetals: A Facile Route to Substituted Thiophenes


Mang WANG\*, Qun LIU, Mei Xing ZHAO, Li Min WANG

Department of Chemistry, Northeast Normal University, Changchun 130024

**Abstract:** A new method for the synthesis of substituted thiophenes was through intramolecular aldol condensation of  $\alpha$ -oxo ketene dibenzylthioacetals.All products were confirmed with IR, <sup>1</sup>H NMR and elemental analysis.

Keywords:  $\alpha$ -Oxo ketene dibenzylthioacetals, substituted thiophenes, intramolecular aldol condensation .

As a kind of intermediates,  $\alpha$ -oxo ketene dithioacetals **1** are important in organic synthesis<sup>1,2</sup>. In our recent studies, we found that the difference of dialkythio group can bestow various properties on these kinds of compounds<sup>3,4</sup>. To exploit the reactivity adjusted by the dialkythio groups in **1**,  $\alpha$ -oxo ketene dibenzylthioacetals **2** were chosen and studied. Some interesting new results were obtained in these experiments. Here we report the new results.



When studying the reaction of  $\alpha$ -oxo ketene dibenzylthioacetals 2 with sodium alkoxide, we have discovered that compounds 2 can undergo intramolecular aldol

## Mang WANG et al.

condensation to afford substituted thiophenes **3** under mild condition. All products were identified by IR, <sup>1</sup>H NMR and elemental analysis. The yields are listed in **Table 1**.

| Entry | $R_1$                          | $R_2$            | Х                | Yield (%) | C (%)        | H (%)      |
|-------|--------------------------------|------------------|------------------|-----------|--------------|------------|
| 3a    | а<br>II<br>Сн <sub>а</sub> —С— | -OEt             | -OH              | 50.0      | 67.15(67.03) | 4.79(4.74) |
| 3ь    | а<br>е ta                      | -OEt             | -OH              | 73.7      | 64.61(64.84) | 4.69(4.90) |
| 3c    | сн <sub>3</sub> —С             | -CH 3            | -CH <sub>3</sub> | 33.7      | 75.25(75.33) | 5.51(5.35) |
| 3d    | phC                            | -ph              | -ph              | 55.5      | 77.70(77.89) | 4.55(4.79) |
| 3e    | Н                              | -CH <sub>3</sub> | -CH <sub>3</sub> | 50.3      | 72.80(72.93) | 5.36(5.44) |
| 3f    |                                |                  | √O               | 56.1      | 72.88(72.98) | 5.72(5.86) |

 Table 1. Yield and Elemental analysis of compounds 3

A typical procedure (**3b**) : NaOH (4mmol) was added to a solution of  $\alpha$ -oxo ketene dibenzylthioacetal (**2b**) in 10ml DMF at 0°C. The mixture was stirred and monitored by TLC for 50 mins.. The reaction was quenched with saturated NH<sub>4</sub>Cl (10ml) solution. Dilute HCl was added to acidify the solution to pH=7. Yellow deposit was filtered and purified by crystallization from ethanol. The yield was 73.7%. Elem. Anal. for C<sub>20</sub> H<sub>18</sub>O<sub>3</sub>S<sub>2</sub>: Calcd.: C 64.84, H 4.90, Found: C 64.61, H 4.69; IR (KBr) : 3300~2500, 1722; <sup>1</sup> H NMR:  $\delta_{H}$  (ppm) 1.40 (3H, t, J=7.1, CH<sub>3</sub>), 4.24 (2H, s, SCH<sub>2</sub>), 4.40 (2H, q, J=7.1, CH<sub>2</sub>), 7.25~7.80 (10H, m, ArH), 9.79 (1H, s, OH); <sup>13</sup> C NMR:  $\delta_{C}$  (ppm) 14.119 (CH<sub>3</sub>), 38.902 (S-CH<sub>2</sub>), 61.464 (O-CH<sub>2</sub>), 114.013 114.991 (=C-S-C=), 125.711 125.885 127.706 128.457 128.555 129.018 132.447 134.935, 145.609 (C-C=O), 151.526 (C-OH), 165.803 (C=O).

## Acknowledgment

This work was supported by Chinese Young Teacher's Foundation of Chinese Education Committee.

## References

- 1. R. K. Dieter, Tetrahedron, 1986, 42, 3029.
- 2. H. Junjappa, H. Ila, C. V. Asokan, Tetrahedron, 1990, 46, 5423.
- 3. S. Gill, P. Kocienski, A. Kohler, A. Pontiroli, Q. Liu, J. C. S. chem. Commun., 1996, 1743.
- 4. Q. Liu, Z. M. Zhu, Z. Y. Yang, Y. Li Hu, F. Y. Jing, Y. W. Xiao, *Chem. J. Chinese Universities* (Chinese), **1993**, *14*, 1538.

Received 14 May 1999